相关栏目

展开全部

收起全部

乘法分配律教学设计

教学资源 时间:2024-05-31 13:19:04 WORD下载 PDF下载 投诉 投稿

乘法分配律教学设计(精选15篇)

  作为一名为他人授业解惑的教育工作者,常常需要准备教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。我们应该怎么写教学设计呢?下面是小编精心整理的乘法分配律教学设计,仅供参考,希望能够帮助到大家。

  乘法分配律教学设计1

  一、教材分析:

  乘法分配律是北师大版教材四年级上册第四单元运算律第56、57页教学内容。乘法分配律是本单元的教学重点,也是难点。教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程。同时,学好乘法分配律是学生下节课进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。

  二、教学目标:

  1、结合具体的问题情境,经历探索乘法分配律的过程,理解并掌握乘法分配律的意义;

  2、在观察、比较、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁;

  3、在学习活动中不断产生对数学的好奇和求知欲,培养良好的学习习惯。

  三、教学重点和难点:

  教学重点:经历探索乘法分配律的过程,建立乘法分配律模型。

  教学难点:理解乘法分配律的意义。

  四、教学流程:

  (一)创设情境,感知规律

  师生谈话导入新课。

  师:同学们,“爸爸和妈妈都爱我。”这句话还可以怎么说?

  “小明和小华都是他的好朋友。”这句话也可以怎么说?

  生:……

  师:真聪明,回答正确,在数学王国里也有类似的表达,今天让我们一起去探索吧!

  [设计意图:本环节通过创设一个充满趣味的生活问题,引领学生发展自身的灵性,寻求数学知识,与现实问题之间的本质联系,促进学生感悟、内化、激发学生探索新知的兴趣。]

  (二)解决问题,明晰算理。

  1、情境一——厨房贴瓷砖

  (1)让学生从图中获取数学信息,提出数学问题。

  (2)生汇报,师择取问题:一共贴了多少块瓷砖?

  让学生用多种方法列综合算式解答问题,然后小组内交流算法及解题思路。

  (3)组织全班交流,要求学生讲清楚是怎样想的。教师配以课件演示并适时板书四种算法:3×10+5×10;(3+5)×10;4×8+6×8;(4+6)×8。

  (4)小组讨论:观察四个算式,哪两个算式联系紧密,是否可以用等号连接?

  (5)全班交流。[(3×10+5×10与(3+5)×10联系紧密,可用等号连接;4×8+6×8与(4+6)×8联系紧密,可用等号连接。]

  追问:为什么可以用“=”连接?让学生充分讲道理。

  (6)比较:观察上面两组算式,你有什么发现?(第一组中的第一个算式里10出现了两次,而第二个算式里10只出现了一次,第一个算式没有小括号,第二个算式有小括号,改变运算顺序了……)

  [设计意图:关注学生已有知识经验,以学生身边熟悉的情境,为教学的切入点,激发学生主动学习的需要。为学生创设了与生活环境、知识、背景密切相关的感兴趣的学习情境——根据主题图,提出问题并通过两种算式的比较,唤醒了学生已有的知识经验,使学生初步感知乘法分配律。]

  2、情境二——花圃

  (1)让学生看图并解决问题。

  (2)学生汇报算法及解题思路,师配以课件演示并板书:(30+25)×2;30×2+25×2。

  师:这两个算式是否可用等号连接,为什么?(可以因为它们的结果相同,都是求篱笆的长,只是运算顺序不同。)

  3、举实例

  师:生活中,像用这样两种方法解决的问题很多,你能举个例子吗?学生独立思考后全班交流。比如:

  (1)老师买了5个篮球和5个足球,一个篮球50元,一个足球80元,一共花了多少钱?

  (2)一辆中巴车限乘20人,一辆小轿车限乘4人,现在各租2辆,一共能坐多少人?

  [设计意图:创设问题情境,联系生活实际为学生感受乘法分配律提供现实背景,在学生独立思考的基础上,引导有效的交流,使学生对乘法分配律有所初步感知。]

  (三)观察对比,概括规律

  这一环节是本节课的中心环节,为了突出重点,突破难点,发挥学生的主体作用。我安排了观察总结、举例验证、抽象概括和尝试应用四个层次进行教学。

  1、观察总结

  (1)师:同学们,请观察黑板上这几组算式,你有什么发现吗?请小组内讨论交流。

  (2)学生汇报(学生结合算式,能说出自己的发现即可)。

  (3)教师在学生总结的基础上指着算式小结乘法分配律的意义:两个数和同一个数相乘,等于把这两个加数分别同这个数相乘,再把两个积相加,结果不变。

  (4)师揭示课题,板书课题:乘法分配律。

  [设计意图:这一环节让学生从多组算式入手,通过观察比较,互相补充,在算式中寻其相同点和不同点,并在分析题意中,找寻其存在规律的必要性,帮助学生在理解算理的基础上,明确乘法分配律的含义。]

  2、举例验证

  让学生列举不同的'算式来验证乘法分配律,再小组交流,集体反馈时教师有选择地板书学生列举的算式并适时表扬。

  [设计意图:学生举例验证过程,是学生不完全归纳的过程,对于学生识记乘法分配律,理解乘法分配律的内涵有重要的作用,通过自己举例验证有利于学生将新的知识纳入到自己已有的知识体系。]

  3、抽象概括

  (1)让学生用a、b、c表示乘法分配律,有困难的学生教师即时指导,再汇报交流,师板书:a×c+b×c=(a+b)×c,生齐读字母公式。

  (2)让学生比较乘法分配律与“爸爸和妈妈都爱我,爸爸爱我,妈妈也爱我。”这两句话之间的相似之处。

  生:a相当于爸爸,b相当于妈妈;c相当于我,爱相当于乘号。

  [设计意图:让学生用字母表示乘法分配律,历经归纳推理到抽象概括的过程,体会用字母式子表示乘法分配律的严谨与简洁。]

  4、尝试应用

  (1)让学生用自己喜欢的方法表示4×9+6×9……,说明乘法分配律是成立的;

  (2)学生独立完成后,小组交流;

  (3)教师巡视抽取有代表性的方法展示给大家看;

  (4)再问这个算式还可以怎样表示?学生说出另一种算式,课件呈现4×9+6×9=(4+6)×9

  [设计意图:让学生借助自己喜欢的方式结合此题说说这个算式还可以怎样表示,学生的思考过程就是乘法分配律形式的再现过程,要让多个学生表达,在相互表达中,加深对乘法分配律的理解。]

  (四)挑战过关,应用规律:

  第一关:请算一算一共有多少个方格?(用两种方法列综合算式计算)。

  (1)学生汇报算法;

  (2)比较哪种方法比较简便?为什么?

  第二关:填一填

  ①(12+40)×3=□×3+□×3

  ②15×(40+8)=15×□+15×□

  ③78×20+22×20=(□+□)×20

  ④66×28+66×32+66×40=(□+□+□)×□

  (1)学生展示填写的答案。

  (2)分别说说转化以后的算式和原来的算式比,哪一个让我们计算起来感觉比较简便?为什么?

  第三关:学校要给28个人的合唱队买服装,一件上衣58元,一条裤子42元,请你算算买服装要花多少钱?(用两种方法列综合算式解答)

  (1)学生汇报算法。

  (2)比较哪种方法比较简便?小结:学习了乘法分配律可以灵活选择算法,怎么计算简便就怎么算。

  [设计意图:多样练习也是一种信息源,解决问题的过程其实也是一种深化理解、蓄积“能量”的过程,是学生拓展知识视野,完善认知结构,提升认识境界、增长人生智慧的过程。在练习中,帮助学生继续完善对乘法分配律的理解。]

  (五)课堂总结,梳理新知

  让学生谈谈本节课的收获,教师加以梳理,最后质疑解惑。

  [设计意图:让学生将知识系统化、条理化,对在获取新知中体现出的数学思想方法进行反思,从而加深对知识的理解。]

  五、板书设计

  乘法分配律

  (3+5)×10=3×10+5×10

  (4+6)×8=4×8+6×8

  (30+25)×2=30×2+25×2

  (35+65)×5=35×5+65×5

  (2+3)×5=2×5+3×5

  (a+b)×c=a×c+b×c

  乘法分配律教学设计2

  学情分析:

  乘法分配律这个知识点在本节课以前学生已经有一些潜移默化的理解,在实际计算中也有应用,如:本单元第一课时的《卫星运行时间》乘数是两位的乘法中,“114×21=”不论是第一种“114×20=2280,114×1=114,2280+114=2394”还是第四种用竖式计算,其实质都是在利用乘法分配律这一理论依据,即将21个114,分成20个114和1个114的和,只是表达形式不同罢了。因此,基于这些基础,我教学时特别注重与旧知的联系和在意义上的沟通。

  教学目标:

  1.理解并掌握乘法分配律并会用字母表示。

  2.能够运用乘法分配律进行简便计算。

  3.在乘法分配律的发现过程中训练学生观察、归纳、概括等能力。

  4.感受“由特殊到一般,再由一般到特殊”的认识事物的方法,增强独立自主、主动探索、自己得出结论的学习意识。

  教学重点:

  理解并掌握乘法分配律。

  教学难点:

  乘法分配律的推理及运用。

  教学过程:

  一、情景激趣,提出猜想

  1.情景

  暑假中,我们谕小娃娃表演的《阳光羌娃》在比赛中获得了巨大的成功,而且,他们马上还要到香港参加演出。(出示照片)

  出示资料:他们每天都在辛苦地训练着,有时会练得吃饭的时间都没有,昨天晚上,王老师就给参加训练的18个男生和23个女生每人准备了一份8元的快餐,你知道王老师一共用了多少钱吗?

  (设计意图:以学生熟悉的学校中的大事作为问题背景,可以让学生切实的感受到数学的广泛应用性,也利于学生主动解决问题。)

  ①整理条件、问题

  从这段资料中你知道了那些信息?王老师遇到了哪些问题?

  ②学生列式,抽生回答:(18+23)×8,18×8+23×8

  ③交流算式的意义

  第一个算式先算什么?再算什么?第二个算式呢?

  ④计算:(发现两个算式结果相等)

  ⑤观察、分析算式特点

  咦,我发现这两个算式非常有意思。你看看,这是两个不同的算式,很多地方都不相同,仔细看看,又有相同的地方,对吧!

  现在,就来仔细观察一下这两个算式,看看它们到底有哪些相同点?又有哪些不同点?

  ⑥全班交流,引导学生从下面几个方面进行思考

  A.涉及到得运算及顺序:都包含了+、×这两种运算,左边是先算加法,合起来以后再乘;右边是分别先乘,然后再加。

  B.涉及到的数:都用到了18、23和8这三个数,其中8在左边出现了一次,在右边出现了两次。

  C.计算结果:结果相等。

  (设计意图:对算式意义的分析让学生明白这两个算式相等的道理,而从外在特点的分析则让学生初步感知乘法分配律的特点。同时,细致的特点分析也为学生后面的举例验证打下基础)

  2.提出猜想

  真有趣,运算顺序不同,数据也有不一样的,结果却一样,那是不是只有这一个算式才是这样呢?还是像这样的算式都有这样的规律呢?

  怎样才能知道像这样的算式都有这样的规律?

  引导学生想到用举例的方法进行验证。

  师小结:要想知道这是不是一个普遍的规律,那我们就举出一些这样的例子,再看看它们的'结果想不想等就可以了。

  (设计意图:对一个人而言,记忆一个知识、规律并不是最重要的,最重要的是他要知道从哪里去寻找知识和规律,要知道他的发现如何去获得证明。本节课就是要以乘法分配律的学习为载体,培养学生这方面的能力,这才是真正的立足于学生一生的发展而在教学。)

  二、举例验证,证明合理性

  1.全班举例:抽生举例,全班进行判断,看所举的算式是否符合猜想的特征。

  2.分组举例

  两个孩子为一组,一起举一个例子,再一起计算验证,看结果是否相等。

  3.交流:谁愿意把你举的例子和大家一起分享?

  A.这个式子符合要求吗?

  B.这些式子都有一个共同的规律,这个共同的规律是什么?

  教师引导学生小结:左边都是把两个数合起来再与第三个数相乘,右边是分开乘,再把两个积相加,右边算式中这个相同的乘数,在左边算式中放在了括号的外面。

  (设计意图:让学生经历举例验证的过程,经历归纳概括的过程。)

  三、概括归纳,建立模型

  1.个性概括

  这样的式子你们还能写吗?能写完吗?

  强调这样的例子还有很多很多,是写不完的。

  你能用一个式子将所有的像这样的式子都概括出来吗?

  学生用自己的方法概括规律。(学生可能用文字概括,可能用图形符号概括,可能用字母概括)。

  2.统一认识

  教师指出一般用a、b、c表示式子中的三个数,这个规律可以表示成

  (a+b)×c=a×c+b×c

  给出规律的名称:今天,我们一起动手动脑发现了这个非常有趣的规律,这个规律是四则运算中一个非常重要的规律,叫做乘法分配律。

  3.进一步认识

  这个式子表示两个数合起来与第三个数相乘的结果与用这两个数分别与第三个数相乘,再把两个积相加的结果相等。反之,两个数都与同一个数相乘,再把积相加所得到的结果与先把这两个数合起来再与第三个数相乘,所得到的结果相等。

  齐读式子。

  (设计意图:学生通过不完全归纳法,得出规律。在这个过程中,通过不同方法的概括,培养学生的抽象能力,尤其是分析与综合的能力,归纳与概括的能力。)

  四、巩固应用,深化认识

  1.哪些算式与72×35相等

  72×30+72×5

  72×3572×30+5

  70×35+2×35

  70×35+2

  问:为什么相等?

  (设计意图:让学生理解乘法分配律的本质意义)

  2.你会填吗?

  (10+7)×6=×6+×6

  8×(125+9)=8×+8×

  7×48+7×52=×(+)

  问:订正时强调第一小题为什么这样填?第三个式子中括号外面为什么要写7。

  (设计意图:学生进一步深刻理解乘法分配律)

  3.7×48+7×527×(48+52)

  这两个式子你想选择哪个进行计算?为什么?

  如果只给你第一个式子,你会想办法让你的计算变得简便吗?

  小结:利用乘法分配律有时候可以使计算变得更简便。

  (设计意图:通过学生的观察,明白乘法分配律在计算中的意义。)

  4.先想一想,下列各题怎样计算更简便,把你的简便方法写出来。

  ①34×72+34×28(订正时问:为什么不直接算)

  (80+4)×25

  订正时问:把(80+4)×25写成80×25+4×25依据是什么?

  如果不用好不好算?

  (80+20)×25

  问:这道题与(80+4)×25的样子一样,都是两个数的和与第三个数相乘,为什么你们又不用乘法分配律来计算了呢?

  教师小结:在计算中要根据数据特点,灵活运用乘法分配律。

  ②21×2575×99+75

  小结:在计算中遇到不符合乘法分配律特点的式子,可以利用拆数等方法,在不改变原数大小的前提下将式子变成符合乘法分配律特点的式子,然后再进行简算。

  (设计意图:通过题组练习,让学生在计算中要根据数据特点,灵活运用乘法分配律,培养学生思维的灵活性,不生搬硬套题型。)

  五、全课小结

  孩子们,你们今天收获了什么?

  当你们在一些具体的问题中发现某些规律,而你又不敢肯定它正确时,你可以怎么办呢?

  板书设计

  乘法分配律

  (18+23)×8(18+23)×8=18×8+23×87×48+7×52=7×(48+52)

  =41×8…………

  =328(元)学生举例…………34×72+34×28(20+4)×25

  18×8+23×8…………(80+20)×25

  =144+184个性概括:……

  =328(元)(a+b)×c=a×c+b×c21×2575×99+75

  乘法分配律教学设计3

  【教学目标】

  1、深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。

  2、能根据算式各自的特征,选择使用、灵活计算。

  3、能根据乘法分配律适用条件,恒等变形算式,提高计算的转化能力!

  4、通过计算,培养仔细看题、留意特点、反映迅速等良好习惯!

  【教学重点】

  深入理解乘法分配律两种算式意义,正确运用分配律进行简便计算。

  【教学难点】

  1、能根据算式各自的特征,选择使用、灵活计算。

  2、能根据乘法分配律适用条件,恒等变形计算式,提高计算的转化能力!

  【教学过程】

  环节

  教师活动

  学生活动

  设计意图

  一、回顾引入

  1、我们昨天学了……,请写出依据(字母表达式)

  2、看着这个字母表达式,你想说点什么?

  1、学生一起回答省略部分

  2、学生各自在自己草稿本上写出字母表达式

  3、让学生充分表达!

  以忆引练,为接下来的练习做知识铺垫准备!

  二、开展练习

  分别出示:

  1、基础题

  (1)选择题

  (2)填空题

  (3)用简便方法计算

  1、口答选择题

  2、笔写填空题

  3、比赛方式完成简便计算

  1、通过选择和填空两种题型,让学生进一步体会乘法分配律的现实意义及其算式结构。

  2、训练准确简便计算能力,也是巩固新课掌握的计算方法

  小结:正确使用乘法分配律,留意算式结构,小心相同因数混乱。

  2、提高题(计算各题,怎样简便就怎么算)。

  1、先标出你认为能够简便计算的题

  2、动笔计算,并验证自己的'观察

  养学生观察力、细心力、分析力、和计算灵活性。

  小结:一看、二想、三算

  3、拓展题(能快速算出下面各题吗?)。

  用作选做题:做你会计算的题

  训练学生拆数、拼凑、约感能力,满足学习能力较强学生需要

  小结:变看似不能简便计算为能够简便计算

  三、全课总结

  1、涵盖小结内容

  2、分享个性错误(如写错数字、计算错),避免同学犯与自己相同的错误。

  乘法分配律教学设计4

  教学内容

  P36页例3,做一做,练习六习题。

  教学目标

  1、知识与技能:引导学生探究和理解乘法分配律。

  2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

  3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

  教学重点

  乘法分配律的意义和应用。

  教学难点

  乘法分配律的反应用。

  教学过程

  一、目标导学

  (一)导入新课

  1、复习导入

  (8+2)×1258×125+2×125

  2、揭示课题:乘法分配律

  (二)展示目标(见教学目标1、2)

  二、自主学习

  (一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

  1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

  2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

  3、计算这两道题你发现了什么?能用一句话概括吗?

  4、这是乘法的什么运算律?用字母怎样表示?

  5、会用简便算法计算4×25+6×25吗?

  (二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的'问题做标注)

  (三)自学检测

  下面哪些算式运用了乘法分配律?

  117×(3+7)=117×3+117×7

  24×(5+12)=24×17

  (4+5)×a=4×a+5×a

  三、合作探究

  (一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

  (二)师生互探

  1、解答各小组自学中遇到不会的问题。

  2、针对自学提纲5题请不同方法同学汇报。

  3、结合“自学提纲”引导学生归纳总结:(并板书)

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

  四、达标训练(1、2题必做,3题选做、4题思考题)

  1、下面哪个算式是正确的?正确的打√,错误的打×。

  56×(19+28)=56×19+28()

  32×(7+3)=32×7+32×3()

  64×64+36×64=64×(64+36)()

  2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

  ⑴25×(200+4)⑵35×201

  25×200+25×435×200+35

  ⑶265×105—265×5⑷25×11×4

  265×(105—5)11×(25×4)

  3、用乘法分配律计算。

  103×20xx×5524×205

  4、在()里填上适当的数。

  167×2+167×3+167×5=167×()

  28×225—2×225—6×225=()225

  39×8+6×39—39×4=()×()

  五、堂清检测

  (一)出示检测题(1-2题必做,3题选做,4题思考题)

  1、用简便方法计算。

  24×75+24×25125×22—125×14

  (25+20)×435×99+35

  2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

  3、计算。

  89×10135×36+35×63+35

  4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

  (二)堂清反馈:

  作业布置

  练习册相关习题。

  板书设计

  乘法分配律

  一共有多少名同学参加了这次植树活动?

  (1)(4+2)×25(2)4×25+2×25

  =6×25=100+50

  =150(人)=150(人)

  (4+2)×25=4×25+2×25

  (a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

  乘法分配律教学设计5

  设计思路:

  本节课从学生的生活经验出发,让学生在真实的情境中认识乘法分配律感受到数学知识的真实,数学知识就在自己的身边,有助于培养学生用数学的思维方法观察周围事物,思考问题的良好习惯。本节课,在整个探究发现乘法分配律的过程中,我没有把知识规律直接展示给学生,而是让学生积极地动手实践、自主探索及与同伴进行交流,亲历观察、归纳、猜测、验证、推理等探究发现的全过程,学生不仅发现乘法分配律的知识,而且学习科学探究的方法,数学思维的能力得到了发展。

  一、教学内容

  义务教育教科书(人教版新教材)小学数学四年级下册第三单元第二节内容乘法运算定律之乘法分配律(第26-28页内容)。

  二、教材内容分析:

  《乘法分配律》是新人教版小学数学四年级下册,第26-28页内容。本课的教学内容是在学生已经掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的乘法分配律,是本单元的教学重点,也是本节课内容的难点。乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要

  三、学生情况分析:

  今天我们学习的乘法分配律是在已经掌握了乘法交换律、结合律的基础上进行教学,运用这些定律使一些运算得到简便。四年级学生已有一定的观察、比较、分析、理解的能力,但运用能力不够,抽象概括能力不强,形象思维占主导,个人思维常受一些定势思维的干扰。对于复杂些的计算题,其理解、掌握还不够,有一定的难度。

  四、教学目标

  针对教材的特点和学生情况,分别从知识与技能、过程与方法、情感态度与价值观三维目标来确定本节课的教学目标。

  知识与能力目标:理解和掌握乘法分配律的意义,培养学生分析、归纳的能力;学会用字母表示乘法分配律;掌握乘法分配律的特点,区分乘法分配律与结合律的不同点。

  过程与方法目标:经历乘法分配律的推导、发现过程,体验比较分析、归纳发现的学习方法。

  情感、态度与价值观目标:感受数学知识之间的逻辑之美,提高学生的审美能力,培养学生独立思考的良好学习习惯。

  五、教学重点、难点

  重点:本节课的教学重点是理解乘法分配律的意义,并归纳出定律。

  难点:难点是理解乘法分配律的意义及应用。

  六、教学准备:

  交互式多媒体、课件ppt.(以下均为做课课件)

  七、教法、学法:

  (1)、教法:由于学生已初步具有探索、发现运算定律并应用运算定律简便计算的经验,本节课遵循“解决问题—发现规律—交流规律—表达规律”的顺序来呈现内容,这样的安排易引起学生对学过的方法的回顾,也有利于他们顺利学习和掌握本节课内容。

  (2)学法:在实际教学时,我强调依例题情境引导观察、比较、分析、理解、概括出乘法分配律,以亲身经历贯穿学习全过程,重视学生的成功体验,引领他们在合作、交流的和谐氛围中理解算理,一步步发现与成功、探索与理解。

  本节课以学生自主学习、自主探索为主,通过学生的自学、运用等学习形式,让学生去感受数学问题的探索性和挑战性。让学生多思、多说、多练,积极主动参与教学的整个过程。

  八:教学过程:

  (一)、谈话导入、激发兴趣。(课件出示图片ppt4)

  1.谈话:不知道同学们注意过没有,我们说的话中存在着一种有趣的分配现象。比如说:“我爱爸爸和妈妈。”可以把它分成两句来说:“我爱爸爸,我也爱妈妈。”照这样“我爱吃苹果和西瓜”可以怎样说(我爱吃苹果,我也爱吃西瓜。)当然,也可以反过来,将两句话合成一句话来表述。“我爱看漫画书,我也爱看故事书。”可以这样说“我爱看漫画书和故事书。”今天中午我吃了米饭、青菜和鱼可以怎样说是不是挺有趣的其实在我们的数学中,也存在着这种有趣的分配现象,想不想一起去研究(见课件)

  设计意图:看我们中国的语言很神奇、美妙。在数学上是否也有这样神奇、美妙的现象呢那么,我们数学上有没有可能把一个算式变成两个算式,两个算式合成一个算式呢

  使学生带着问题,带着对算式的好奇心进入本科的学习。激发学生的求知欲,体现数学知识源于生活以及数学的现实意义

  (二)、创设生活情境,引入新课。

  谈话:通过上节课的探索,我们已经发现了乘法交换律和乘法结合律,你们还记得吗老师记得在上节课的学习中有一个问题没有解决,对吗咱们今天再继续探索,看看又会发现什么新的规律。

  (课件出示主题图)(课件出示图片ppt5)

  3.提问:(出示ppt6)

  (1)你从图中获得了哪些信息

  (2)今天我们要解决的问题是什么

  预设:一共有25个小组,每组里4人负责挖坑和种树,2人负责抬水、浇树。问题是“一共有多少名同学参加了这次植树活动”

  设计意图:课件设计是为了让学生想说、敢说、抢着说,激发他们早点进入最佳学习状态,为探究新知识聚集动力。

  (三)、自主探索、合作交流。(课件出示ppt7)

  一)初步感知

  1.提问:要解决一共有多少名同学参加了这次植树活动先求什么再求什么你是怎么列式计算的

  2.学生解答后汇报。

  追问:还有不同的想法吗

  板书:(4+2)×254×25+2×25

  3.组织交流

  (1)说说每道算式的意思

  预设:(4+2)×25是先求出每组有多少人,再计算出25组有多少人。4×25+2×25是先求才挖坑和种树的人数,再求出抬水和浇水的人数,最后求出一个的人数。

  (2)比较最后的计算结果。(相同)

  追问:可用等号连接吗写成一个算式。

  板书:(4+2)×25=4×25+2×25

  读:谁能把这道等式读一遍。多读从语言上感悟乘法分配律。

  观察,这道等式左边和右边有什么相同的地方和不同的地方

  请跟你的同桌说说。全班汇报。

  相同的地方:结果相同,每个算式都有3个数。

  不同的地方:运算顺序不同。

  设计意图:合理利用并依据现实生活实际改造现有的主题图情境,更贴近生活实际的生活情境创设,使学生更易在具体情境中发现问题、提出问题、解决问题,得出不同的解题思路,列出不同的算式,在计算结果相等的情况下组成等式,这为学生感受乘法分配律提供了现实背景,学生从中也体会到乘法分配律的合理性

  (二)、猜想验证。(课件出示ppt9)

  1.小组内写一写,算一算,举出这样的例子。

  2.汇报交流。

  3.引导学生总结概括。(提示:等式左右两边是怎样计算的)

  预设:等号左边的式子是先算括号里两个加数的和,再和括号外面的数相乘;

  而等号右边的式子是把括号里的两个加数分别去乘括号外面的数。

  (三)、同类推广,总结归纳。(出示ppt10、11)

  1.有这样特征的例子多不多,你能写一个这样的等式吗(要求数字用得简单些)。请你在你的本子上写一写。

  2.你是怎样验证的。

  3.同桌互相验证。

  4.用符号表示:这样的式子很多,你能用自己喜欢的办法把具有这种特征的等式表示出来吗(用彩笔)

  5.揭示课题(小结:出示ppt12)

  我们已经用自己喜欢的方法把这种规律表示出来,其实,这就是我们今天要学的—《乘法分配律》,一起读一遍。

  6.统一用字母表示:(课件出示ppt13)

  如果用字母a、b、c表示这三个数,你能用它们表示具有这种特征的'式子吗

  (a+b)×c=a×c+b×c

  总结规律:

  (a+b)×c=a×c+b×c

  a×(b+c)=a×b+a×c

  两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配率。

  设计意图:新课程标准指出,学生学习数学的过程是充满了观察、实验、猜想、验证、推理与交流等丰富多彩的数学学习活动,因而在设计这一环节时让学生写出一个算式的另一种形式,并说说这样写的理由,让学生借助已有的生活经验来叙述自己写的算式,增加学生对乘法分配律的理解,同时让学生写一写这样的算式,说说自己是怎样写的,从而让学生自己从中发现乘法分配律,培养了学生的探究能力。]四)学习乘法分配律的逆用。

  1、既然左边=右边,那右边等于左边,谁来读一读。

  2、从右往左看,这个式子有什么特征

  3、乘法分配律可以从左边用到右边,也可以从右边用到左边。

  设计意图:让学生明白:乘法分配律左右两边可以相互逆用。

  (四)、巩固应用,拓展延伸。(出示课件ppt16)

  1.判断正误,下面哪些算式是正确的正确的画“√”,错误的画“×”。

  56×(19+28)=56×19+28()

  32×(7×3)=32×7+32×3()

  64×64+36×64=(64+36)×64()

  问题:说一说你的判断理由。

  2.下面哪些算式运用了乘法分配律(出示课件ppt17)

  117×3+117×7=117×(3+7)()

  4×a+a×5=(4+5)×a()

  24×(5+12)=24×17()

  36×(4×6)=36×6×4()

  3.李阿姨购进了60套这种运动服,花了多少钱(出示课件ppt18)

  4.观察下面的竖式,说一说在计算的过程中运用了

  什么运算定律。出示课件ppt19

  25×12=25×2+25×10

  5,做一做,用乘法分配律计算下面各题。(出示课件ppt19)

  103×1220×55

  6、回顾、拓展

  1、老师想知道“挖坑和种树的人数”比“抬水和浇树的人数”多多少人你会列式吗

  学生回答,师板书。(在原有算式上添上减号即可)

  (4-2)×25=4×25-2×25

  2、说说算式所表达的意思。

  3、进一步完善乘法分配律。字母表示为:(a-b)×c=a×c-b×c

  [设计意图:练习设计上,我深入解读教材练习设计的同时,对练习进行了适当的加工改造,力求体现现实性、趣味性、层次性、思考性、发展性。多形式、多层次的练习,深化学生对乘法分配律意义的理解,更多注重的是深层次的挖掘,比如:乘法分配律的逆应用,其在减法中的应用等,这使得乘法分配律的内涵得到延伸,让学生对乘法分配律有了更一步的理解。]

  (五)、课堂小结

  这节课你学会了什么请说一说。

  板书设计乘法分配律

  (4+2)×25=4×25+2×25

  (a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

  两个数的和乘一个数,可以把这两个加数分别与这个数相乘,再把两个积加起来,结果不变。这叫做乘法分配率。

  教学反思

  乘法分配律的教学是在学生学习了乘法交换律、乘法结合律的我基础上教学的。乘法分配律也是学生在这几个定律中的难点。

  在学生已有的知识经验的基础上,一起来研究抽象的算式,寻找它们各自的特点,从而概括它们的规律。要在学习中大胆放手,把学生放在主动探索知识规律的主体位置上,让学生能自由地利用自己的知识经验、思维方式去尝试解决问题,在探究这一系列的等式有什么共同点的活动中,学生涌现出的各种说法,说明学生的智力潜能是巨大的。所以我在这里花了较多的时间,让学生多说,谈谈各自不同的看法,说说自己的新发现,教师尽可能少说,为的就是要还给学生自由探索的时间和空间,从而能使学生的主动性、自主性和创造性得到充分的发挥。

  乘法分配律教学设计6

  教学内容

  苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

  教学目标

  1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

  2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

  3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

  教学过程

  一、创设情境,谈话导入

  谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

  二、自主探究,合作交流

  1、交流算法,初步感知。

  提问:从图中你获得了哪些信息?

  再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

  反馈:你是怎样解决这一问题的?为什么这样列式?

  组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

  谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

  学生在自己的本子上写,教师板书,让学生读一读。

  谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

  提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

  根据学生回答,列出算式:32×5+45×5和(32+45)×5。

  再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

  启发:比较这两个等式,它们有什么相同的地方?

  2、深入体验,丰富感知。

  引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的'联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

  分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

  要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

  学生举例并组织交流。

  3、揭示规律。

  提问:像这样的等式,写得完吗?

  谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

  反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

  小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。[板书:(a+b)×c=a×c+b×c]

  三、实践运用,巩固内化

  1、“想想做做”第1题。

  谈话:下面我们利用乘法分配律解决一些简单的问题。

  出示“想想做做”第1题,让学生在书上填一填。

  学生完成后,用课件反馈。

  2、“想想做做”第2题。

  你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

  回答第2小题时,让学生说一说理由。

  3、“想想做做”第3题。(略)

  四、梳理知识,反思总结

  提问:今天这节课,你有什么收获?有什么感受想对大家说?

  五、布置作业

  “想想做做”第4、5题。

  [说明]

  数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

  乘法分配律教学设计7

  教学内容:

  人教社教材四年级下册P26页例7

  教学目标:

  1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。

  2、会应用乘法分配律,使某些运算简便。

  3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。

  教学重点:

  让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。

  教学难点:理解和掌握乘法分配律的`推导过程。

  教学设计思路:

  1、通过买衣服的情境转入乘法分配律。

  2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。

  3、会用乘法分配律进行简单的计算。

  教学过程:

  一、创设情境,生成问题

  1、生活引入,激发兴趣

  今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。

  出示:两件上衣(价格分别是100元、80元)

  两条裤子(价格分别是70元、50元)

  2、提出问题,独立思考

  出示:(1)一共有几种搭配方法?

  (2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。

  二、探索交流,建构规律

  1、生选择搭配方案并计算。

  2、组内研讨,并出示:

  (1)一共有几种搭配方案?

  (2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?

  3、汇报交流:

  (1)探讨第一种方案。

  师:哪一个同学想先来给项老师推荐他的方案?

  (预设学生回答:A:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(10070)×5

  B:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱裤子价钱=总价。列式为:100×570×5)

  (2)探讨第二种方案。

  (3)探讨第三种方案。

  (4)探讨第四种方案。

  教师板书:

  一套×套数=5件上衣5条裤子

  (150100)×5=150×5100×5

  (15070)×5=150×570×5

  (100100)×5=100×5100×5

  (10070)×5=100×570×5

  4、生列举例子。

  (1)出示:活动要求

  A、写出三个这个的算式。

  B、交流:你怎么来说明你写的算式左右两边是相等的?

  (2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。

  5、用字母表示乘法分配律。

  问:谁能用一个算式表示全班所有同学的算式?

  6、学生归纳概括:乘法分配律的意义。

  三、巩固应用,训练提升

  1、在□里填上适当的数。

  (1520)×12=□×12□×12

  25×(49)=□×4□×9

  8×(105)=□×□□×□

  30×24=30×□30×□

  2、把左右两边相等的算式用线连接起来。

  48×1252×1215×1826×18

  (1518)×2625×4025×4

  25×(404)(4852)×12

  14×(45-5)11×425×4

  (11×25)×414×45-14×5

  四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?

  乘法分配律教学设计8

  教学内容

  义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律

  教材分析

  本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的.情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。

  学情分析

  本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。

  教学目标

  1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。

  2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。

  3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。

  教学重点

  理解乘法分配律的意义。

  教学难点

  发现与归纳乘法分配律。

  教学准备

  课件习题卡

  教学过程

  一、结合实事创设情景,引入新课

  1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!

  2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?

  3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?

  二、合作交流,探索发现新知

  1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。

  板书:乘法分配律

  2、发现和归纳乘法分配律

  (1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?

  (2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?

  (3)生举例并展示,共同验证并读一读式子。

  (3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?

  (4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。

  3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。

  三、小结

  同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?

  四、分层练习,逐级达标

  1、填一填:习题卡第一题

  巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。

  学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。

  2、看一看:习题卡第二题

  3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。

  五、回顾课程,进行总结

  同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?

  板书设计

  乘法分配律

  (5+10)×24=5×24+10×24

  (a+b)×c=a×c+b×c

  25×(4+2)=25×4+25×2

  a×(b+c)=a×b+a×c

  习题卡

  填一填

  1、(32+25)×4=32×()+25×()

  2、(64+12)×5=()×5+()×5

  3、(7+6)×8=7868

  4、(43+25)×2=

  5、3×6+7×6=(+)

  看一看

  下面哪个算式是正确的?正确的画“√”,错误的画“×”

  (19+28)×56=19×56+28

  (7×3)×32=7×32+3×32

  64×64+36×64=(64+36)×64

  乘法分配律教学设计9

  教学内容:

  北师大版四年级下册数学教科书第36页内容,和练习四的第5、6、7、9题。

  教学目标:

  1、从学生已有生活经验出发,通过观察、类比、归纳、验证、运用等方法深化和丰富对乘法分配律的认识。

  2、渗透“由特殊到一般,再由一般到特殊”的认识事物的方法,培养学生独立自主、主动探索、发现问题,解决问题的能力,提高数学的应用意识。

  教学重点:

  充分感知并归纳乘法分配律。

  教学难点:

  理解乘法分配律的意义。充分感知并归纳乘法分配律。

  教具准备:

  多媒体课件

  教学设想:

  本课试图在一种开放的教学环境下,让学生通过“联系实际,感知建模;类比归纳,验证模型;质疑联想,拓展认识;联系实际,深化认识;归纳概括,完善认识”的探索过程来逐步丰富对“乘法分配律”的认识。培养学生积极参与、合作探究、勇于质疑、大胆表现、主动探索的学习精神和创新意识,体现课堂教学中以学生为主体、教师为主导的教学原则。充分体现了“为解决实际问题而学习数学”的新理念。

  活动过程:

  一、比赛激趣,提出猜想

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

  9x37+9x63

  9x(37+63)

  (2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

  这两道题运算顺序不同,但结果相同,可以用一个等式表示:

  9x37+9x63=9x(37+63)

  (3)命名猜想。

  这位同学说的非常好,我们就先将他的这个发现命名为xx猜想。(板书:猜想)

  二、引导探究,发现规律。

  1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)看到这幅图画,你想提什么问题?(一共贴了多少块瓷砖?)

  2、(1)谁能估计一下一共贴了多少块瓷砖?

  (2)请大家用自己的方法来验证他的估计是否正确。

  (3)(谁来汇报自己的算法)出示两种不同的算式6x9+4x9和(6+4)x9,为什么这样列算式,观察这两个算式,你有什么发现?

  3、举例验证,进一步感受

  认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

  把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)

  轻声读这些等式,你发现了什么?

  4、归纳总结,概括规律。

  (1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

  (2)刚才我们用举例的方法验证了xx猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

  (3)看来这个规律是普遍存在的`,xx同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

  (3)刚才我们举了很多含有这样规律的例子,这样的例子能举完吗?那么我们能不能用一个式子把乘法分配律表示出来呢?四人小组商量一下,这个算式看起来怎样——(稍等)简洁、明了。这就是数学的美。

  等号左边表示什么意思?等号右边表示什么意思?大家说的意思实际上就是乘法分配律的文字表述,请看大屏幕,这是老师通过大家的表述总结出来的,谁能给大家读一下。

  在读这句话的时候,哪里应特别注意?

  请看黑板上的等式,这个等式从左到右成立,反过来从右到左呢?也是成立的。

  三、探索发展,应用规律

  (1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

  (2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

  (80+4)x2534x72+34x28

  (完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

  (3)、刚才这两道题比较简单,大家做出来了,现在我出两道比较难的,大家有没有信心做出来,请四人小组合作研究下面这两道题目,怎样简算?

  38x29+3843x102

  (4)、小结:通过研究,你认为怎样的题目才能应用乘法分配律使计算简便?如果遇到像刚才这两道题,我们可以把它稍做变化,再应用乘法分配律,使计算简便。

  四、巩固练习,解决问题(我们刚才发现认识了乘法分配律,老师要考考大家学得怎么样,请看大屏幕,我们来做练习)

  1、请大家根据运算定律在下面的_里填上适当的数。5、6、7题和前面几道题哪里不一样?可以应用乘法分配律吗?为什么?四人小组讨论一下。

  2、大家请到数学医院,帮老师判断对错。

  3、完成连一连。(给一分钟思考时间,然后抢答)

  4、完成填一填。(这道题我找表现最好的小组来开火车)

  5、应用题(请大家帮老师解决一个实际问题,在练本上独立完成)

  五、全课小结

  请你选择一个最能代表今天研究成果的算式,说说我们今天研究了什么?

  请大家想一想,我们是怎样发现乘法分配律的呢?

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

  乘法分配律教学设计10

  教学内容:

  小学四年级数学(上)《探索与发现(三)》乘法分配律》教材第48页

  教学目标:

  1、经历探索的过程,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  教学重点:

  理解乘法分配律的特点。

  教学难点:

  乘法分配律的正确应用。

  教学过程:

  一、复习回顾

  (出示课件1)计算

  35×2×5=35×(2×)

  (60×25)×4=65×(×4)

  (125×5)×8=(125×)×5

  (3×4)×5×6=(×)×(×)

  师:上节课,经过同学们的探索,我们发现了乘法交换律和结合律,并会应用这些定律进行简便计算,今天咱们继续探索,看看我们又会发现什么规律。让我们一起走上探索之路。

  二、探究发现

  (出现课件2)

  师:大家看,工人叔叔正在贴瓷砖呢,看到这幅图,你发现了哪些数学信息?

  生:我发现有两个叔叔在贴瓷砖

  生:我发现一个叔叔贴了4列,每列贴9块,另一个叔叔贴了6列,每列贴了9块。

  师:你最想知道什么问题?

  生:我想知道工人叔叔一共贴了多少块瓷砖?(按鼠标出示问题)师:你能估计出工人叔叔一共贴了多少块瓷砖吗?

  生:我估计大约有100块瓷砖

  生:我估计大约有90块瓷砖。

  师:请同学们用自己喜欢的方法来计算瓷砖究竟有多少块。(学生做,小组讨论,教师巡视)

  师:谁来向大家介绍一下自己的做法?

  生:6×9+4×9(板书)

  =54+36

  =90

  分别算出正面和侧面贴的`块数,再相加,就是贴的总块数。

  生:(6+4)×9(板书)

  =10×9

  =90(块)

  因为每列都是9块,所以我先算出一共有多少列,再用列数去乘每列的块数,就是一共贴瓷砖的块数。

  师:同学们的计算方法都很好,请同学们仔细观察两种算法,你能发现什么?

  生:我发现计算方法不同,但结果却是一样的。

  6×9+4×9=(6+4)×9(板书)

  师:请同学们仔细观察上面两道算式的特点,你能再举一些这样类似的例子吗?

  (学生举例,教师板书)

  师:这几们同学举的例子符合要求吗?请在小组中验证一下。(小组汇报)

  小组1:符合要求,因为每组中两个算式都是相等的。

  小组2:在每组的两个算式中,一个是两个数的和去乘一个数,另一个是用这两个数分别是去乘同一个数,再相加,符合要求。

  (板书用=连接算式)

  师:比较等号左右两边的算式,从它们的特点和结果相等中你能发现什么规律,小组再讨论一下。

  小组1:我们小组发现,只要符合上面题目要求的算式,结果都是一样的。

  小组2:我们小组发现,两个不同的数分别去和同一个数相乘,然后再相加,可以先把这两个数相加再一起去乘第三个数,结果不变。结论(课件2):师:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。这叫做乘法分配律。它是我们学习的关于乘法的第三个定律。

  师:大家齐读一遍。

  师:和同桌说一说自己对乘法分配律的理解。

  师:上节课我们学习了用字母来表示乘法交换律和结合律,现在你能用字母的形式表示出乘法分配律吗?用a,b,c分别表示这三个数,试着写一写吧。

  (a+b)×c=a×c+b×c

  师:这叫做乘法分配律

  三、巩固练习:

  1、计算

  (80+4)×2534×72+34×28

  师:观察算式特点,看是否符合要求,能否应用乘法分配律使计算简便。

  2、判断正误

  (25+7)×4=25×4×7×4()

  35×9+35

  =35×(9+1)

  =350----()

  3、填一填

  (12+40)×3=×3+×3

  15×(40+8)=15×+15×

  78×20+22×20=(+)×20

  四、总结

  师:说说这节课你有什么收获?

  师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。同学们要在理解的基础上牢牢记住它,希望它永远成为你的好朋友,伴你生活、成长。

  [板书设计]

  探索与发现(三)

  -----乘法分配律

  (a+b)×c=a×c+b×c

  6×9+4×9=(6+4)×9

  (40+4)×25=40×25+4×25

  (64+36)×42=42×64+42×36

  乘法分配律教学设计11

  教学内容:

  苏教版四年级(下)运算律——乘法分配律

  教学目标:

  1、让学生经历乘法分配律的探索过程,理解并掌握乘法分配律。

  2、初步了解乘法分配律的应用。

  3、在学习活动中培养学生的探索意识和抽象概括能力。

  教学重点:

  在解决实际问题的过程中,理解并掌握乘法分配律的意义。

  教学难点:

  正确表述乘法分配律,并能理解运用乘法分配律进行简便计算的理由。

  教学过程:

  一、比赛激趣,引入新课。

  (1)、同学们,学习新课前,我们先来一个小小的数学热身赛,看谁算的又对又快。

  7×4×25125×9×848+315+52888+17+83125×8

  (2)、评出胜负,分析原因。

  (3)、小结:运用乘法结合律和乘法交换律可以使计算简便,今天我们继续探索乘法的另一定律《乘法分配律》(板书课题)

  二、初步感知乘法分配律。

  1、解决以下实际问题。

  问题一:育新学校马上要举行艺术节比赛了,老师准备给他们每人买一套服装,我们一起去看看好吗(课件出示例题情景图)

  短袖衫32元/件裤子45元/件夹克衫65元/件

  (1)提问:要买5件夹克衫和5条裤子,一共要付多少元呢你能解决这样的问题吗请同学们在自己的本子上列出综合算式,再算一算。

  (2)学生动手,独立算出要付的钱数。

  (3)教师巡视,让用65×5+45×5和(65+45)×5两种不同方法解答的学生分别口答。并说明解题思路。

  板书:(65+45)×5     65×5+45×5

  问题二:一块长方形的菜地长64米,宽26米,求周长。

  (1)学生动手,独立算出周长。

  (2)教师巡视,让用64×2+26×2和(64+26)×2两种不同方法解答的'学生分别口答。并说明解题思路。

  板书:64×2+26×2(64+26)×2

  三、探索规律。

  1、板书:(65+45)×5=65×5+45×5

  (64+26)×2=64×2+26×2

  2、体验感悟

  (1)、谈话:请同学们观察这两个等式,你发现它们有什么共同的特点吗

  (2)在学生回答的基础上,教师根据情况相机引导:等号左边先算什么,再算什么右边呢

  3、类比展开。

  提问:你能根据刚发现的特点编几组等式吗

  学生编写,教师巡视后全班交流。

  4、揭示规律。

  (1)用语言表述:两个数的和与另一个数相乘,等于这两个数分别与另一个数相乘再相加;

  如果有学生答得比较到位:把他的话再重复一遍的。

  (2)谈话:如果现在要用字母来表示这个规律,你们认为应该用几个字母呢(3个)

  我们就用a、b、c这三个字母来表示

  (3)引导:如果在第一个等号的左边我用a来表示65,b来表示45,c来表示5就可以写成这样的形式:

  板书:(a+b)×c

  (4)追问:那么等号的右边应该怎么来表示呢

  学生独立完成。

  学生口答后板书:(a+b)×c=a×c+b×c

  四、应用规律。

  练习课本56页第一,二习题

  五、拓展延伸。

  1、看看前面买服装的问题,根据提供的信息,除了可以求一共要付多少元之外,还可以提出什么数学问题

  (1)出示:5件夹克衫比5条裤子贵多少元

  怎样列式还可以怎样列式出示:60×5-50×5(60-50)×5

  (2)思考:这两道算式等不等呢你怎么知道相等的

  这个等式和我们发现的乘法分配律的形式一样吗哪儿不一样

  (3)如果老师是这样买的,

  出示:买5件夹克衫、5条裤子和5件短袖衫,一共要付多少元怎样列式还可以怎样列式出示:

  60×5+50×5+30×5(60+50+30)×5

  (4)这两道算式等不等呢

  这个等式和我们发现的乘法分配律的形式一样吗

  2小结:乘法分配律不仅适用于两个加数相加,还适用于两个数相减,甚至是多个数相加或相减。同学们掌握了这些知识后相信在今后的计算中会更加简便快捷。

  六、全课小结

  你今天这节课学到了什么

  请大家想一想,我们是怎样发现乘法分配律的呢

  今天,我们通过猜想、举例、总结、应用发现了乘法分配律,今后,同学们还可以运用这种数学思维去研究其他的数学知识。

  乘法分配律教学设计12

  教学内容分析:

  乘法分配律是北师大版小学数学四年级上册第三单元P48~P49的教学内容。本课是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上进行学习的。乘法分配律是本单元的教学重点,也是本节课内容的难点,教材是按照分析题意、列式解答、讲述思路、观察比较、总结规律等层次进行的。然而乘法分配律又不是单一的乘法运算,还涉及到加法的运算,是学生学习的难点。因此本节课不仅使学生学会什么是乘法分配律,更要让学生经历探索规律的过程,进而培养学生的分析、推理、抽象、概括的思维能力。同时,学好乘法分配律是学生以后进行简便计算的前提和依据,对提高学生的计算能力有着重要的作用。在本节课的教学过程的设计上,我注重从学生的生活实际出发,把数学知识和实际生活机密地联系起来,让学生在体验中学到知识。

  教学目标:

  知识与能力:

  1、在探索的过程中,发现乘法分配律,并能用字母表示。

  2、会用乘法分配律进行一些简便计算。

  过程与方法:

  1、通过探索乘法分配律的活动,进一步体验探索规律的过程。

  2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

  情感、态度与价值观:

  1、在这些学习活动中,使学生感受到他们的身边处处有数学。

  2、增加学生之间的了解、同时体会到小伙伴合作的重要。

  3、在学习活动中不断产生对数学的好奇和求知欲,着重培养良好的学习习惯。

  教学过程:

  一、创设情境,激趣导入。

  1、出示:

  125×8=25×9×4=18×25×4=

  125×16=75+25=89×100=

  教师请个别学生口算并说出部分题的口算依据及应用的定律。

  2、再出示:119×56+119×44=

  师;这一题,谁能口算出来?老师可以口算出来,你们相信吗?是不是老师又应用到数学的什么定律呢?你们想不想知道?

  二、引导探究,发现规律。

  1、出示课本插图

  师:你们看,工人叔叔正在工作呢,观察这幅图,你能发现哪些数学信息?

  生:我看到两个工人叔叔在贴瓷砖。

  生:我发现一个叔叔贴这面墙壁,另一个叔叔贴另一面墙壁。

  生:老师,我发现两个叔叔贴的瓷砖一起数的话,一行有10块,一共有9列。

  师:你真细心。大家能根据获得的信息提一个数学问题吗?

  学生提问题,教师出示问题:一共贴了多少块瓷砖?

  2、估计

  师:谁能估计工人叔叔大约贴了多少块瓷砖?

  学生试着估计。

  3、列式解答

  师:同学们的估计是否正确呢?请你们用自己喜欢的方法计算一下瓷砖究竟有多少块。

  学生用自己喜欢的方法计算,教师巡视。

  师:谁来向大家介绍一下自己的算法?

  生:6×9+4×9(板书)

  =54+36

  =90(块)

  师:这边的6×9和4×9分别是算什么?

  生:分别算出正面和侧面贴的'块数。

  师:哦,然后两面的块数再相加,就是贴的总块数。你们明白吗?还有不一样的方法吗?

  生:我是这样列的,(6+4)×9(板书)

  =10×9

  =90(块)

  师:你能说说为什么这样列式吗?

  生:两面墙共有9列,一行有6+4块,所以我先算出一行有10块,再用10×9算出共有多少块瓷砖。

  师:你真行,找到了这种方法。现在同学们看一下这两种方法,你发现了什么?

  生:计算方法不一样,结果却是一样的。

  师:所以这两个式子我们可以用一个什么样的数学符号连接起来?

  生:等于号。

  教师板书。

  4、观察算式的特点

  师:观察等号两边的式子,它们有什么特点呢?

  生:等号左边的算式是两个加数的和与一个数相乘的积,等号右边的算式是这两个加数分别与一个数相乘,再把所得的积相加。

  生:等号左边算式中的两个加数,就是等号右边算式中两个不同因数;等号左边算式中的一个因数,就是等号右边算式中两个相同的因数。

  师:是这样吗?你们能再举一些类似的例子吗?

  5、举例验证

  让学生根据算式特征,再举一些类似的例子。

  如:(40+4)×25和40×25+4×25

  63×64+63×36和63×(64+36)

  讨论交流:

  (1)交流学生的举例是否符合要求:

  (2)交流不同算式的共同特点;

  (3)还有什么发现?(简便计算)

  师:两个数的和与一个数相乘的积等于每个加数分别与这个数相乘再把所得的积加起来,这叫做乘法分配律。

  6、字母表示。

  师:如果用a、b、c分别表示三个数,你能写出你的发现吗?

  学生先独立完成,然后小组交流。最后教师板书:(a+b)×c=a×c+b×c并带读。

  7、揭示课题。

  三、应用规律,解决问题。

  课文第49页的“试一试”。请同桌讨论探究下面这些题目怎样计算比较简便?

  1、(80+4)×25

  (1)呈现题目。

  (2)指导观察算式特点,看是否符合要求,能否应用乘法分配律计算简便。

  (3)鼓励学生独自计算。

  2、34×72+34×28

  (1)呈现题目。

  (2)指导观察算式特点,看是否符合要求。

  (3)简便计算过程,并得出结果。

  3、让生观察:36×3

  =30×3+6×3

  =90+18

  =108

  师:你能说说这样计算的道理吗?

  生独自思考,小组讨论,全班交流。

  四、总结。

  师:说说这节课你有什么收获?

  师:今天同学们通过自己的探索,发现了乘法分配律,你们真的很棒。乘法分配律是一条很重要的运算定律。应用乘法分配律既能使一些计算简便,也能帮助我们解决生活中的一些数学问题,在我们的生活和学习中应用非常广泛。希望同学们要在理解的基础上牢牢记住它。

  乘法分配律教学设计13

  教学目标:

  1.使学生结合具体的问题情境经历探索乘法分配律的过程,理解并掌握乘法分配律。

  2.培养学生简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁。

  3.使学生在数学活动中获得成功的体验,进一步增强学习数学的兴趣和自信心。

  教学过程:

  一、创设情境

  师(出示教材第54页的情景图):从图中你能获得哪些信息?“单价”一词是什么意思?

  师:买5件夹克衫和5条裤子,一共要付多少元?你们能列综合算式独立解答吗?试试看。(教师巡视,了解学生是采用什么方法解答的,并请两名用不同方法解答的学生上台板演)

  [设计意图:借助学生的生活经验,创设学生感兴趣的买衣服情境,激发学生的学习积极性和主动性。同时在学生原有知识的基础上,通过引导学生认真审题、仔细分析,自主探索解决问题的方法,自然生成了不同的解题思路和算法,为后续学习奠定了基础。]

  二、深入探索

  1.交流两种算法的实际意义。

  (1)师:“(65+45)×5”谁会读?“65+45”算的是什么?这样的钱在实际生活中叫做――(一套)你能用图在黑板上贴出来表示一套吗?(指名一人上黑板贴模型图)

  师:这样贴,能明显地看出是一套吗?谁能上来纠正?

  师:“再乘5”是什么意思?谁上来贴出另外几套衣服?

  师:想一想,这一题为什么能这样做呢?

  师(小结):如果夹克衫和裤子的件数不同,那就不能这样做。

  [设计意图:利用摆模型衣服,巧妙地帮助学生理解算式各部分的含义,促进了形象思维和抽象思维的互助互补,为学生初步感知乘法分配律建立了清晰的表象,有效地拓展了学生思维的广度和深度。同时,让学生读算式并小结出由于两种衣服数量相同才能采用这种方法,都是为后面概括规律做好铺垫。]

  (2)提问:“65×5+45×5”是什么意思?

  2.建立等式,初步感知。

  师:这两道算式算出的都是什么?算出的结果怎样?在数学上我们可以用什么符号来连接?〔板书:(65+45)×5=65×5+45×5)〕

  师:谁能读一读这个等式?你们发现这个等式的两边有什么联系吗?

  3.类比展开,体验感悟。

  师:你们能模仿这个等式再举一个这样的例子吗?再算一算,两边的算式是不是相等?(指名举例,挑选几组等式板书)

  师:刚才大家举出了这么多类似的例子,左右两边的算式都是相等的,看来这里面一定有内在的规律。

  师(出示算式):读一读这些等式,左边的算式都有什么特点?再想一想,右边的`算式与左边的算式有什么联系?(小组互相讨论一下)

  [设计意图:学生对乘法分配律本质的理解,需要经历一个主动探索、体验感悟、发现规律的过程。在教师提供素材的基础上,让学生自己举出例子,追求素材的丰富性和多样性。在模写的过程中,学生是自己验证自己发现的规律,使学生的主体地位得以充分体现。通过让学生“读一读”,有效降低了概括的难度。学生在多次观察、比较、讨论的基础上总结规律,水到渠成。]

  4.揭示规律,理解意义。

  (1)师:两个数的和同第三个数相乘,等于这两个加数分别同第三个数相乘,再把所得的乘积相加,这就是乘法分配律。(板书课题:乘法分配律)

  (2)师:“乘法”我们大家都懂,“律”就是规律,那“分配”二字作何解释呢?

  师:括号外的数既要与第一个加数相乘,又要与第二个加数相乘,这就是“分配”。

  (3)提问:如果用字母a、b、c表示这三个数,这个规律可以怎样写?[板书:(a+b)×c=a×c+b×c]

  (4)师:这既然是一个等式,左边的算式和右边的算式相等,那么反过来看,右边的算式和左边的算式也应该怎么样?也就是说,这个规律反过来看可以吗?

  (5)师(小结):通过刚才的研究,谁再来说一说,什么是乘法分配律?

  [设计意图:通过对“分配”二字的分析,让学生更加深刻地理解了乘法分配律的意义,也体现了设计的精细和独到。同时,引导学生理解乘法分配律的可逆性,为后面的练习做好了充分的准备。]

  三、巩固内化

  1.做“想想做做”第1题。

  (1)让学生独立完成前两题,并说说自己是怎样想的。(第2小题要让学生明确:在求两积之和的算式中,有相同的乘数,这个相同的乘数可以放在括号的外面)

  (2)让学生完成后两题,并要求说说是怎样填、怎样想的。

  2.做“想想做做”第2题。

  (1)让学生独立完成,并交流是怎样想的。

  (2)第3小题要提醒学生注意74×1可直接写成74,第4小题可以让学生再分别说说题中的两个式子分别和怎样的算式相等。

  3.下面每组中两道题的计算结果相同吗?哪一题的计算比较简单?

  (1)64×8+36×8(2)12×30+12×5

  (64+36)×812×(30+5)

  师:看来,运用乘法分配律还能进行简便计算,这是我们下节课将要进一步研究的内容。

  [设计意图:合理地安排练习,体现了教学的扎实,并让学生初步感知了乘法分配律对于计算的简便,同时激发了学生对后续学习的兴趣。]

  四、总结提升

  乘法分配律教学设计14

  【教学目标】

  1.让学生经历乘法分配律的探索过程,理解并掌握乘法分配律。

  2.在观察、比较、猜测、分析和概括的过程中,培养简单的推理能力,增强用符号表达数学规律的意识,体会用字母式子表示乘法分配律的严谨与简洁。

  3.让学生在数学活动过程中获得成功的体验,进一步增强学习数学的兴趣和自信心。

  【教学重点】

  理解并掌握乘法分配律,并会运用乘法分配律进行简便计算。

  【教学难点】

  发现并归纳乘法分配律。

  【教学过程】

  一、探究问题,提炼规律

  1.初步感知。

  展示主题图,并提问:

  师:你知道哪些数学信息?要求什么问题?

  师:图中的问题可以怎样列式?

  要求只列式,不计算,学生独立列式后汇报。

  教师板书:(6+4)×246×24+4×24?摇

  【设计意图】

  要求学生只列式,不计算,为学生进行猜想验证提供可能,同时让学生明白,同一道题用不同的方法解答,其结果肯定相同的道理。

  让学生说出每种解法先算什么?再算什么?

  师:这两道算式的结果应该怎样?为什么?

  反馈:因为这两道算式都是求四、五年级一共要领的跳绳根数。

  学生通过计算结果来验证上述结论。

  教师组织谈话:这两道算式不一样,但都算出了四、五年级一共要领的跳绳根数。在数学上,我们可以把相等的两个算式写成一个等式。

  教师板书:(6+4)×24=6×24+4×24。

  组织谈话:刚才用了两种方法说明这两道算式可以组成一个等式,一是这两道算式都是求同一个问题,二是计算结果相等。有没有别的方法说明它们相等?

  教师引导学生从乘法的意义来解释:等式左边算式先用6加4得10,再乘24就是表示10个24相加的和是多少;右边算式先算6个24相加与4个24相加各是多少,再求和也是表示10个24相加的和是多少。

  组织谈话:今天就来研究既有乘法又有加法的这一类等式。

  明确:等式左边是6加4的和乘24,右边是左边括号里的两个加数分别与24相乘,再把所得的积相加,结果相等。

  【设计意图】

  本环节,学生经历了猜想、验证的过程,从三个方面理解两个算式为什么相等,初步感知规律,为进一步探究规律夯实基础。

  2.出示:计算下面两组算式,是否相等。

  ①(2+3)×82×8+3×8?摇

  ②(4+7)×64×6+7×6

  学生口算得出结果,再判断。

  3.教师组织谈话:在数学上,我们把通过观察几道等式后发现的规律称之为猜想,是不是任意三个数组成这样的.算式,都具有这样的规律呢?还需要通过举例子来验证。

  (1)师生合作验证:

  先请一位学生随机说出三个数。

  提问:两个数的和同一个数相乘怎么表示?

  根据左边的算式,教师要求学生写出右边的算式。

  学生口算结果,验证两个算式是否相等。

  (2)同桌两人合作:

  左边的同学任意找出三个数,并写出两个数的和同一个数相乘,右边的同学写出对应的算式,再分别算出结果,验证是否相等。(学生汇报,教师板书)

  提问:这样的例子,能写完吗?(板书省略号)

  4.师:观察上面每个等式的左边和右边,有联系吗?有什么联系?

  师生小结:两个数的和与一个数相乘,等于两个加数分别与这个数相乘,再把两个乘积相加。

  5.师:你们发现的规律就是乘法分配律。(板书)

  6.师:你会用自己喜欢的方法表示出乘法分配律吗?

  【设计意图】学生通过举例验算的方法去感知规律,围绕这一目标,对所列的算式,进行观察、比较和归纳,提出猜想并举例验证,学生在真实体验中感受规律,建构乘法分配律,用语言表示规律便水到渠成。让学生用自己喜欢的方式,表示乘法分配律,其目的有三:一是检验是否正确理解规律,二是让学生再次感受和明晰乘法分配律的结构,三是调动学生学习的主动性。

  师:在数学上,我们一般用字母式子来表示乘法分配律。如果用字母a、b、c表示三个数,乘法分配律可以写成:(a+b)×c=a×c+b×c。(板书)

  师:字母a、b、c可以是哪些数?分别相当于例题中的哪个数?

  二、尝试练习,运用规律

  1.根据乘法分配律,在里填上合适的数。

  (42+35)×2=×+×

  72×(30+6)=×+×

  27×12+43×12=(+)×

  15×26+15×14=(+)×

  学生独立完成,集体评讲。

  完成前两题后,提问:两个数的和乘一个数,都等于什么?

  完成第三小题后,提问:你是怎么想的?谁是相同数?

  明确:在求两积之和的算式中,如果有相同的乘数,那么这个相同的乘数可以放在括号的外面。

  2.根据乘法分配律,在里填上运算符号。

  (38+16)×2=382162

  94×12+94×38=94(1238)

  25×(20+4)=2520254

  63×50+63×2=63(502)

  学生独立完成后,集体评讲。

  追问:如何确定圆圈内的运算符号?

  3.横着看,在得数相同的两个算式后面画“√”。

  ①(28+16)×728×7+16×7?摇

  ②15×39+45×39(15+45)×39?摇

  ③40×50+90×5040×(50+90)?摇

  ④74×(20+1)74×20+74?摇

  学生口答,教师重点讲一讲第③题,相同数是50,40×50+50×90应该等于50×(40+90),40×(50+90)应该等于40×50+40×90。

  第④题,让学生明白74×1可以写成74,反过来,74也可以写成74×1。

  4.连线。

  3×17+5×1725×(4×6)

  (5×3)+17

  (18+4)×5(3+5)×17

  18×5+4×5

  18×5×4×5

  (25×4)×625×4+25×6

  学生口答,让学生说一说自己的思考过程。通过左边第三个算式,帮助学生理解乘法分配律的内涵与乘法结合律的区别。

  5.每组中两道题的计算结果相同吗?哪一题的计算比较简便?

  (1)64×8+36×8(2)12×30+12×5?摇(64+36)×812×(30+5)

  本题意在揭示,符合乘法分配律的算式,具体计算时,有时先求和简便,有时先求积简便,为乘法分配律的运用作铺垫。

  【设计意图】由于乘法分配律与前面学过的运算律相比,形式上变化大,设计练习时,从填数开始,由易到难,帮助学生不断修正和提高对乘法分配律的理解。

  三、深度探究,延伸规律

  将原问题改为:四年级比五年级多领多少根跳绳?要求学生用两种不同的方法解答。

  学生汇报,教师板书:

  (6-4)×246×24-4×24

  =2×24=144-96

  =48(根)=48(根)

  摇答:四年级比五年级多领48根跳绳。

  组织谈话:这两道算式,我们也可以用等号连接。

  教师板书:(6-4)×24=6×24-4×24。

  【设计意图】通过改变例题中的数学问题,引出类似的公式(a-b)×c=a×c-b×c,有助于学生全面、完整地理解、建构乘法分配律。

  四、全课总结

  乘法分配律教学设计15

  教学目标:

  1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。

  2、通过观察、分析、比较,培养学生的分析、推理和概括能力。

  3、发挥学生主体作用,体验探究学习的快乐。

  教学重点:

  指导学生探索乘法的分配律。

  教学难点:

  乘法分配律的应用。

  教学准备:

  课件、口算题、例题、练习题等。

  教学策略:

  本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。

  教学流程:

  一、设疑导入

  师:同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?

  生:可以使计算简便。

  师:同意吗?(同意。)接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。(生口算。)

  【设计意图:这样开门见山的导入,不但可以巩固旧知,为新课作铺垫,而且当学生快速口算到新课题时,会出现一种戛然而止的效果,出现问题情境,从而自然导入新课。】

  二、探究发现

  1。猜想。

  师:同学们算得很快,看看下道题你们能不能很快算出来。(出示:(10+4)×25。)

  师:这道题算得怎么不如刚才的快啊?

  生:它和前面的题目不一样。

  师:好,我们来看一下它与前面的题目有什么不同?

  生:前面的题都是乘号,这道题既有乘号还有加号。

  生:前面的算式都是3个数相乘,这个算式是两个数的和同一个数相乘。

  师:这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。

  生:(10+4)×25=10×25+4×25。

  师:为什么这样算哪?

  生:我是根据乘法分配律算的。

  师:你是怎么知道的?你知道什么是乘法分配律吗?

  生:我是从书上知道的,我知道它的字母公式(a+b)×c=a×c+b×c。

  师:你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?(板书课题:乘法分配律。)

  2。验证。

  师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。(生活动计算。)

  师:说说你有什么发现。(两个算式的结果相同。)说明这两个算式关系是什么?(相等。)

  小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?(不能。)那怎么办?(再举几个例子。)好,下面请每个同学再举几个这样的.例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?

  师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?(没有。)一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?

  3。结论。

  生:两个数的和同一个数相乘,可以用这两个加数分别同这个数相乘,再把它们的积相加,结果不变。

  师:同学们真聪明,你们知道吗?这就是乘法的第三个运算定律“乘法分配律”。(出示课件,学生齐读分配律的意义。)

  师:如果老师用a、b、c表示两个加数和乘数,你能用字母表示乘法分配律吗?

  (a+b)×c=a×c+b×c

  师:回到第一题,看来利用乘法分配律,确实可以使一些计算简便。接下来,我们利用乘法分配律计算几道题。

  【设计意图:在探究乘法分配律的过程中,让学生经历了一次严密的科学发现过程:猜想——验证——结论。为学生的可持续学习奠定了基础。】

  三、练习应用

  (生练习应用定律。)

  师:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

  四、总结

  师:本节课我们学习了乘法分配律,看到乘法分配律,你们能联想到什么呢?(两个数的差,同一个数相除都可以应用这样的方法。)

  反思:

  本课的学习要使学生理解和掌握乘法分配律,并能正确地进行表述。让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透从特殊到一般,再由一般到特殊的认识事物的方法。本节课的教学较好地贯彻了新课程标准的理念,主要体现在以下几点:

  一、主动探究,实现亲身经历和体验

  现代教学论认为:学生的学习过程应是学习文本批判、质疑和重新发现的过程,是在具体的情境中整个身心投入到学习活动,去经历和体验知识形成的过程,也是身心多方面需要的实现和发展过程。本节的教学中,我从口算导入新课,引出(10+4)×25这样一个特殊的算式。接下来,让学生猜想它的简算方法,然后让学生通过计算来验证方法的可行性,再让学生举例验证方法的普遍性,最后由学生通过观察、讨论、发现、归纳总结出乘法分配律。整个过程中,我不是把规律直接呈现在学生面前,而是让学生通过自主探索去感悟发现,使主体性得到了充分发挥。在这个探究过程中,学生经历了一次严密的科学发现过程:猜想——验证——结论——联想。为学生的可持续学习奠定了基础。

  二、多向互动,注重合作与交流

  在数学学习中,学生的思维方式、智力、活动水平都是不一样的。因此,为了使不同的学生在数学学习中都得到发展,教师在本课教学中立足通过师生多向互动,特别是通过学生与学生之间的互相启发与补充,来培养他们的合作意识,实现对“乘法分配律”这一运算定律的主动建构。学生对“乘法分配律”的建构过程,正是学生个人的方法化为共同的学习成果,共同体验成功的喜悦,生命活力得到发展的过程。正所谓“一枝独秀不是春,百花齐放迎春来”。

版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

本文地址:http://www.ikzyw.cn/zongjie/jiaoxuez/7264.html 转载时请以链接形式注明文章出处!

乘法分配律教学设计

手机扫码分享

Top