实际问题与一元二次方程教学设计(精选10篇)
作为一名教职工,往往需要进行教学设计编写工作,编写教学设计有利于我们科学、合理地支配课堂时间。那要怎么写好教学设计呢?下面是小编为大家整理的实际问题与一元二次方程教学设计,欢迎阅读,希望大家能够喜欢。
实际问题与一元二次方程教学设计1
教学目标
知识技能:掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力。
过程与方法:通过探索球积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义。
情感态度:鼓励学生自主探究,合作交流,养成自觉反思的良好习惯。
重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,还会进行推理判断。
难点:把数学问题转化为数学问题。
关键:从积分表中找出等量关系。
教具:投影仪。
教法:探究、讨论、启发式教学。
教学过程
一、创设问题情境
用投影仪展示几张比赛场面及比分(学习是生活需要,引起学生兴趣)
二、引入课题
教师用投影仪展示课本106页中篮球联赛积分榜引导学生观察,思考:
①用式子表示总积分能与胜、负场数之间的数量关系;
②某队的胜场总分能等于它的负场总积分么?
学生充分思考、合作交流,然后教师引导学生分析。
师:要解决问题①必须求出胜一场积几分,负一场积几分,你能从积分榜中得到负一场积几分么?你选择哪一行最能说明负一场积几分?
生:从最下面一行可以发现,负一场积1分。
师:胜一场呢?
生:2分(有的用算术法、有的用方程各抒己见)
师:若一个队胜a场,负多少场,又怎样积分?
生:负(14-a)场,胜场积分2a,负场积分14-a,总积分a+14.
师:问题②如何解决?
学生通过计算各队胜、负总分得出结论:不等。
师:你能用方程说明上述结论么?
生:老师,没有等量关系。
师:欸,就是,已知里没说,是不是不能用方程解决了?谁又没有大胆设想?
生:老师,能不能试着让它们相等?
师:伟大的发明都是在尝试中进行的,试试?
生:如果设一个队胜了x场,则负(14-x)场,让胜场总积分等负场总积分,方程为:2x=14-x解得x=4/3(学生掌声鼓励)
师:x表示什么?可以是分数么?由此你的出什么结论?
生:x表示胜得场数,应该是一个整数,所以,x=4/3不符合实际意义,因此没有哪个队的胜场总积分等于负场总积分。
师:此问题说明,利用方程不仅求出具体数值,而且还可以推理判断,是否存在某种数量关系;还说明用方程解决实际问题时,不仅要注意方程解得是否正确,还要检验方程的解是否符合问题的实际意义。
拓展
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
师:我们可以从积分榜中积分不相同的两行数据求的胜负一场各得几分,如:一、三行。
教师引导学生设未知数,列方程。学生试说。
生:设胜一场积x分,则前进队胜场积分10x,负场积分(24-10x)分,它负了4场,所以负一场积分为(24-10x)/4,同理从第三行得到负一场积分为(23-9x)/5,从而列方程为(24-10x)/4=(23-9x)/5。解得x=2,当x=2时,(24-10x)/4=1。仍然可得负一场积1分,胜一场积2分。
三、巩固练习
已知某山区的平均气温与该山的`海拔高度的关系见表:
海拔高度(单位:m)
100
200
300
400
平均气温(单位:℃)
22
21.5
21
20.5
20
若某种植物适宜生长在18℃20℃(包括18℃20℃)的山区,请问该植物适宜种在海拔为多少米的山区?
学生分析题意,思考,在练习本上完成,然后同桌小议,代表发言,教师点拨。
四、课堂小结:
让几个学生谈自己的收获,再让一个学生全面总结。
五、布置作业:
课本108页8、9题。
六、教学反思
本节课主要是借球赛积分表问题传授数学知识的应用。在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的基础上,本节进一步以探究的形式讨论如何用一元一次方程解决实际问题。要探究的问题比前几节的问题复杂些,问题情境与实际情况更接近。本节的重点是建立实际问题的方程模型。通过探究活动,进一步体验一元一次方程与实际的密切联系,加强数学建模思想,培养运用一元一次方程分析和解决问题的能力。
由于本节问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确建立方程是难点,教师要恰当的引导,让学生弄清问题背景,分析清楚有关数量关系,找出可作为方程依据的主要相等关系,但教师不要代替学生的思考。
实际问题与一元二次方程教学设计2
教材分析
本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。
学情分析
1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。
2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。
3、连续增长问题的中的数量关系、规律的发现是本节课的`难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的探究方式。
教学目标
知识与技能:
1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
2、能根据具体问题的实际意义,检验结果是否合理。
过程与方法:
1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。
情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
教学重点和难点
重点:利用增长率问题中的数量关系,列出方程解决问题
难点:理清增长率问题中的数量关系
实际问题与一元二次方程教学设计3
由"倍数关系"等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标
掌握用"倍数关系"建立数学模型,并利用它解决一些具体问题.
通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用"倍数关系"建立数学模型,并利用它解决实际问题.
重难点关键
1.重点:用"倍数关系"建立数学模型
2.难点与关键:用"倍数关系"建立数学模型
教学过程
一、复习引入
(学生活动)问题1:列方程解应用题
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):
星期一二三四五
甲12元12.5元12.9元12.45元12.75元
乙13.5元13.3元13.9元13.4元13.75元
某人在这周内持有若干甲、乙两种股票,若按照两种股票每天的收盘价计算(不计手续费、税费等),则在他帐户上,星期二比星期一增加200元,星期三比星期二增加1300元,这人持有的甲、乙股票各多少股?
点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:设这人持有的甲、乙股票各x、y张.
则解得
答:(略)
二、探索新知
上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.
(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?
点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样"倍数"增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.
解:设二月份、三月份生产电视机平均增长的百分率为x,则1+(1+x)+(1+x)2=3.31
去括号:1+1+x+1+2x+x2=3.31
整理,得:x2+3x-0.31=0
解得:x=10%
答:(略)
以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.
例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.
解:设平均增长率为x
则200+200(1+x)+200(1+x)2=950
整理,得:x2+3x-1.75=0
解得:x=50%
答:所求的增长率为50%.
三、巩固练习
(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米?
(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.
四、应用拓展
例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+20xxx·80%;第二次存,本金就变为1000+20xxx·80%,其它依此类推.
解:设这种存款方式的'年利率为x
则:1000+20xxx·80%+(1000+20xxx·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2==0.125=12.5%
答:所求的年利率是12.5%.
五、归纳小结
本节课应掌握:
利用"倍数关系"建立关于一元二次方程的数学模型,并利用恰当方法解它.
六、布置作业
1.教材P53复习巩固1综合运用1.
2.选用作业设计.
作业设计
一、选择题
1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().
A.100(1+x)2=250B.100(1+x)+100(1+x)2=250
C.100(1-x)2=250D.100(1+x)2
2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为().
A.(1+25%)(1+70%)a元B.70%(1+25%)a元
C.(1+25%)(1-70%)a元D.(1+25%+70%)a元
3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为().
A.B.pC.D.
二、填空题
1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.
2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.
3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,20xx年降价70%至a元,则这种药品在1999年涨价前价格是__________.
三、综合提高题
1.为了响应国家"退耕还林",改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.
3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.
(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率=×100%)
(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.
答案:
一、1.B2.B3.D
二、1.6(1+x)6(1+x)26+6(1+x)+6(1+x)2
2.a(1+x)2t
3.
三、1.平均增长率为x,则1600(1+x)2=1936,x=10%
2.设乙型增长率为x,甲型一月份产量为y:
则
即16x2+56x-15=0,解得x==25%,y=20(台)
3.(1)第一年年终总资金=50(1+P)
(2)50(1+P)(1+P+10%)=66,整理得:P2+2.1P-0.22=0,解得P=10。
实际问题与一元二次方程教学设计4
【教学目标】
1、会根据具体问题中的数量关系列一元二次方程并求解。
2、能根据问题的实际意义,检验所得结果是否合理。
3、进一步掌握列方程解应用题的步骤和关键。
【教学过程】
一、复习回顾:
1、解一元二次方程都有哪些方法?(学生口答)
2、列一元一次方程解应用题有哪些步骤?(学生口答)
①审题;②设未知数;③找相等关系;④列方程;⑤解方程;⑥答
二、问题探究:
(一)思考课本探究1回答下列问题:
(1)设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了人;第一轮传染后,共有人患了流感。
(2)在第二轮传染中,传染源是人,这些人中每一个人又传染了人,那么第二轮传染了人,第二轮传染后,共有人患流感。
(3)根据等量关系列方程并求解。为什么要舍去一解?
(4)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
(5)完成教材思考:如果按照这样的传播速度,三轮传染后,有多少人患流感?
(学生在交流中解决问题,教师深入小组讨论,对疑惑较多的问题要点拨;前两个问是解题的关键,可作适当点拨。最后思考题,可让学生试试独立完成。教给学生如何审题,分析题。)
三、例题学习:
例1:青山村种的水稻20xx年平均每公顷产7200kg,20xx年平均每公顷产8450kg,求水稻每公顷产量的`年平均增长率。(学生独立思考、练习。一学生板书,教师巡视后讲解)
例2:(教材探究2)两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(给学生分组求解,然后比较哪个小组做的有快又准。最后比较哪种药品成本平均下降率较大。)
四、课堂练习:(学生独立思考、练习。一学生板书,教师巡视后讲解)
1、某种植物的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
2、有一人患了流感,经过两轮传染后共有121人患了流感,毎轮传染中平均一个人传染了几个人?
五、总结反思:(由学生自己完成,教师作适当补充)
1、列一元二次方程解应用题的步骤:审、设、找、列、解、答。最后要检验根是否符合实际意义。
2、探究2是平均增长率或降低率问题。若平均增长(降低)率为x,增长(或降低)前的基数是a,增长(或降低)n次后的量是b,则有:(常见n=2)
教后记:
本节课是一元二次方程的应用第一课时。通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:
一、通过学生口答,复习了列方程解应用题的一般步骤及解一元二次方程的方法,为学习本节知识打好了基础。
二、问题探究通过问题串让学生解决的问题由浅入深,由易到难,也让学生解决问题的能力逐级上升,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。
三、本节课第一个例题,是增长率问题中的一个典型例题,我在引导学生解决此题之后,进一步总结了列方程解应用题的步骤。不仅关注结果更关注过程,让学生养成良好的解题习惯。
四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。
五、课堂上多给学生展示的机会,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。
六、需改进的方面:
1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如例2有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示、
2、只考虑扑捉学生的思维亮点,一学生列错了方程,我没有给予及时纠正。导致使一些同学陷入误区、
3、下课后很多学生和我沟通课上一学生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表个人的不同见解的学风。
实际问题与一元二次方程教学设计5
【学习目标】
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
【教学重点】
列一元二次方程解有关传播问题、平均变化率问题的应用题
【教学难点】
发现传播问题、平均变化率问题中的等量关系
【学习过程】
一、知识回顾
1、解一元二次方程都是有哪些方法?
2、列一元一次方程解应用题都是有哪些步骤?
二、新知探究
问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了_______人,第一轮后共有______人患了流感;
第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
一.选一选
1.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x元,则下面所列方程正确的是( )
A.x+3×4.25%x=33825B.x+4.25%x=33825
C.3×4.25%x=33825D.3(x+4.25x)=33825
【考点】由实际问题抽象出一元一次方程.
【专题】增长率问题.
【分析】根据“利息=本金×利率×时间”(利率和时间应对应),代入数值,计算即可得出结论.
【解答】解:设王先生存入的本金为x元,根据题意得出:
x+3×4.25%x=33825;
故选:A.
【点评】此题主要考查了一元一次方程的应用,计算的关键是根据利息、利率、时间和本金的关系,进行计算即可.
2.若一元二次方程x2﹣4x﹣5=0的`根是直角三角形斜边上的中线长,则这个直角三角形的斜边长为( )
A.2B.10C.2或10D.5
【考点】直角三角形斜边上的中线;解一元二次方程-因式分解法.
【分析】解一元二次方程求出中线,再根据直角三角形斜边上的中线等于斜边的一半解答.
【解答】解:因式分解得,(x+1)(x﹣5)=0,由此得,x+1=0,x﹣5=0,所以,x1=﹣1,x2=5,所以,直角三角形斜边上的中线长为5,所以,这个直角三角形的斜边长为2×5=10.
故选B.
【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,因式分解法解一元二次方程,熟记性质是解题的关键.
3.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为( )
A.14B.12C.12或14D.以上都不对
【考点】解一元二次方程-因式分解法;三角形三边关系.
【分析】易得方程的两根,那么根据三角形的三边关系,排除不合题意的边,进而求得三角形周长即可.
【解答】解:解方程x2﹣12x+35=0得:x=5或x=7.
当x=7时,3+4=7,不能组成三角形;
当x=5时,3+4>5,三边能够组成三角形.
∴该三角形的周长为3+4+5=12,故选B.
【点评】本题主要考查三角形三边关系,注意在求周长时一定要先判断是否能构成三角形.
一.积累·整合
1.某产品,原来每件的成本价是500元,若每件售价625元,则每件利润率是.
A.12%B.25%C.30%D.50%
2.某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同55份,则共有商家参加了交易会.
3.银行的某种储蓄的年利率为4%,小民存1000元,存满一年,本息=。
4.长方形的长比宽多8cm,面积为20m2,则它的周长为________.
二.拓展·应用
5.某钢铁厂去年1月某种钢的产量为5000吨,3月上升到7200吨,这两个月平均每个月增长的百分率________.
6.已知三角形的两边长分别是3和8,第三边的数值是一元二次方程
x2-17x+66=0的根则此三角形的周长为_______.
7.某工厂一月份生产零件1000个,二月份生产零件1200个,那么二月份比一月份增产个增长率是___.
8.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为24m2的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?
三.探索·创新
9.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取适当的措施,经调查发现,如果每件衬衫降价1元,商场每天可多售出2件。
(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?
(2)每件衬衫降价多少元时,商场每天盈利最多?
实际问题与一元二次方程教学设计6
一、教材分析:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;
(2)能根据具体问题的实际意义,检验结果是否合理;
(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二、教法、学法分析:
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三、教学流程分析:
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
活动1复习回顾解决课前参与
活动2封面设计问题的探究
活动3草坪规划问题的延伸
活动4课堂回眸
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与
由学生展示课前参与题目,集体订正。目的.在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究
通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸
放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
实际问题与一元二次方程教学设计7
一、出示学习目标:
1.继续感受用一元二次方程解决实际问题的过程;
2.通过自学探究掌握裁边分割问题。
二、自学指导:(阅读课本P47页,思考下列问题)
1.阅读探究3并进行填空;
2.完成P48的思考并掌握裁边分割问题的特点;
3.在理解的基础上完成P48-49第8、9题(不精确,只留根号即可)。
探究3:要设计一本书的封面,封面长27c,宽21c,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1c)?
分析:封面的长宽之比为27﹕21=9﹕7,中央矩形的长宽之比也应是9﹕7,则上下边衬与左右边衬的宽度之比是。9﹕7
设上、下边衬的宽均为9xc,左、右边衬的宽均为7xc,则:
由中下层学生口答书中填空,老师再给予补充。
思考:如果换一种设法,是否可以更简单?
设正中央的'长方形长为9ac,宽为7ac,依题意得
9a·7a=(可让上层学生在自学时,先上来板演)
2.P48-49第8、9题中下层学生在自学完之后先板演效果检测时,由同座的同学给予点评与纠正
9.如图,要设计一幅宽20,长30的图案,两横两竖宽度之比为3∶2,若使彩条面积是图案面积的四分之一,应怎样设计彩条的宽带?(讨论用多种方法列方程比较)
注意点:要善于利用图形的平移把问题简单化!
三、当堂训练:
1.如图,在一幅长90c,宽40c的风景画四周镶上一条宽度相同的金色纸边,制成一幅挂画.如果要求风景画的面积是整个挂画面积的72%,那么金边的宽应是多少?
(只要求设元、列方程)
2.要设计一个等腰梯形的花坛,上底长100,下底长180。上下底相距80,在两腰中点连线出有一横向甬道,上下两底之见有两条纵向的甬道,各甬道宽度相等,甬道的面积是梯形面积的六分之一,甬道的宽应是多少
实际问题与一元二次方程教学设计8
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
教学过程
一、复习引入
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
二、探索新知
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,渠底为x+0.4,那么,根据梯形的面积公式便可建模.
解:(1)设渠深为xm
则渠底为(x+0.4)m,上口宽为(x+2)m
依题意,得:(x+2+x+0.4)x=1.6
整理,得:5x2+6x-8=0
解得:x1==0.8m,x2=-2(舍)
∴上口宽为2.8m,渠底为1.2m.
(2)=25天
答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.
例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的.彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
实际问题与一元二次方程教学设计9
学习目标
1、进一步认识建立方程模型的作用,提高数学的应用意识
2、在用方程解决实际问题的过程中,提高抽象、概括、分析问题的能力
学习重、难点
重点:用一元二次方程解决实际问题
难点:正确寻找等量关系
学习过程:
一、情境创设
一根长22cm的铁丝。
(1)能否围成面积是30cm2的矩形?
(2)能否围成面积是32cm2的矩形?并说明理由。
二、探索活动
分析情境问题可知:如果设这根铁丝围成的矩形的长是xcm,那么矩形的宽是____________。根据相等关系:矩形的长×矩形的.宽=矩形的面积,可以列出方程求解。
思考:这根铁丝围成的矩形中,面积最大是多少?
三、例题教学
例1如图,在矩形ABCD中,AB=6,BC=12,点P从
点A沿AB向点B以1/s的速度移动;同时,点Q从点B沿边BC
向点C以2/s的速度移动,问几秒后△PBQ的面积等于82?
分析:题中含有等量关系:S△PBQ=82,只要用点P运动的时间
来表示三角形各边的长并代入等量关系式即可得到相应的方程。
例2如图,在矩形ABCD中,AB=6cm,
BC=3cm。点P沿边AB从点A开始向点B以2cm/s
的速度移动,点Q沿边DA从点D开始向点A以1cm/s
的速度移动。如果P、Q同时出发,用t(s)表示移动的时间(0≤t≤3)那么,当t为何值时,△QAP的面积等于2cm2?
四、课堂练习
1、P98练习
2、思维拓展:
如图,有100m长的篱笆材料,要围成一矩形仓库,
要求面积不小于600m2,在场地的北面有一堵50m的旧墙,
有人用这个篱笆围成一个长40m,宽10m的仓库,但面积
只有40×10m2,不合要求,问应如何设计矩形的长与宽才能符合要求呢?
五、课堂小结
如何正确寻找实际问题中的等量关系?
六、作业
后进生:P98练习P99习题4.36优生:P99习题4.36、7、8
实际问题与一元二次方程教学设计10
一、教学目标
1.知识与技能目标
使学生能根据具体问题中的数量关系,列出一元二次方程,并求解。
能运用一元二次方程解决实际生活中的传播问题、增长率问题、面积问题等。
2.过程与方法目标
通过分析实际问题中的数量关系,建立数学模型,培养学生的数学建模能力和逻辑思维能力。
经历将实际问题转化为数学问题并求解的过程,提高学生分析问题和解决问题的能力。
3.情感态度与价值观目标
让学生在实际问题的解决中体验数学的应用价值,增强学生学习数学的兴趣和信心。
通过小组合作学习,培养学生的合作交流意识和团队精神。
二、教学重难点
1.重点
掌握用一元二次方程解决实际问题的方法和步骤。
理解传播问题、增长率问题、面积问题等中的数量关系,并能正确列出方程。
2.难点
如何将实际问题中的数量关系抽象为数学模型,即找到等量关系列出方程。
对解出的方程根进行合理性检验,并能根据实际情况选择合适的根。
三、教学方法
1.讲授法:通过清晰的讲解,向学生传授一元二次方程解决实际问题的基本概念、方法和步骤。
2.启发式教学法:提出问题,引导学生思考,激发学生的好奇心和求知欲,培养学生的独立思考能力。
3.小组合作探究法:组织学生进行小组讨论和合作探究,共同解决实际问题,培养学生的团队合作精神和交流能力。
4.练习法:通过适量的练习题,让学生巩固所学知识,提高解题能力。
四、教学过程
(一)导入新课(5分钟)
1.展示一些生活中的实际问题图片,如传染病传播、经济增长、土地面积规划等,引导学生观察并思考这些问题中可能蕴含的数学关系。
2.讲述一个简单的实际问题情境:某班级中有一个同学感冒了,经过一天的接触,第二天有两个同学也感冒了,假设每个感冒的同学每天传染给相同数量的人,那么第三天会有几个同学感冒呢?第四天呢?
通过这个问题,引发学生的兴趣,让学生初步感受到实际问题与数学的联系,从而引出本节课的主题——实际问题与一元二次方程。
(二)知识讲解(15分钟)
1.传播问题
例1:有一个人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
分析:设每轮传染中平均一个人传染了(x)个人。
第一轮传染后有((1+x))个人患流感;第二轮传染是在第一轮传染的基础上进行的,所以第二轮传染后有((1+x)+x(1+x))个人患流感,即((1+x)^{2})个人患流感。
列方程:((1+x)^{2}=121)
解方程:
(begin{align*}
1+x&=pm11
x&=-1pm11
end{align*})
解得(x_{1}=10),(x_{2}=-12)(舍去,因为传染人数不能为负数)
答:每轮传染中平均一个人传染了10个人。
归纳总结传播问题的公式:若传染源数量为(a),每轮传染中平均一个人传染(x)个人,经过(n)轮传染后感染的总人数为(a(1+x)^{n})。
2.增长率问题
例2:某商品原价为(100)元,经过两次连续降价后售价为(64)元,若每次降价的百分率相同,求每次降价的百分率。
分析:设每次降价的百分率为(x)。
第一次降价后的价格为(100(1-x))元;第二次降价是在第一次降价后的价格基础上进行的,所以第二次降价后的价格为(100(1-x)^{2})元。
列方程:(100(1-x)^{2}=64)
解方程:
(begin{align*}
(1-x)^{2}&=0.64
1-x&=pm0.8
x&=1pm0.8
end{align*})
解得(x_{1}=0.2=20%),(x_{2}=1.8)(舍去,因为降价百分率不能大于(1))
答:每次降价的百分率为(20%)。
归纳总结增长率问题的公式:若初始量为(a),平均增长率为(x),增长(n)次后的量为(a(1+x)^{n});若为平均降低率,则公式为(a(1-x)^{n})。
3.面积问题
例3:如图,要在一块长为(32m),宽为(20m)的矩形耕地上修建三条同样宽的道路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小相等的六块试验田,要使试验田的面积为(570m^{2}),道路的宽应为多少?
分析:设道路的宽为(xm)。
将道路平移到耕地的边缘,可得到一个新的矩形,其长为((32-2x)m),宽为((20-x)m)。
列方程:((32-2x)(20-x)=570)
解方程:
(begin{align*}
640-32x-40x+2x^{2}&=570
2x^{2}-72x+70&=0
x^{2}-36x+35&=0
(x-1)(x-35)&=0
end{align*})
解得(x_{1}=1),(x_{2}=35)(舍去,因为(35gt20),不符合实际情况)
答:道路的宽应为(1m)。
(三)小组合作探究(15分钟)
1.将学生分成小组,每组(4-6)人。
2.给出以下两个实际问题,让小组合作讨论并解决:
问题1:某种植物的主干长出若干数目的`支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是(91),每个支干长出多少小分支?
问题2:某公司今年(1)月份的生产成本是(400)万元,由于改进技术,生产成本逐月下降,(3)月份的生产成本是(361)万元。假设该公司(2)、(3)、(4)月每个月生产成本的下降率都相同,求每个月生产成本的下降率。
3.教师巡视各小组,观察学生的讨论情况,适时给予指导和帮助。
4.每组推选一名代表,上台展示本小组的解题过程和结果,并进行讲解。
5.其他小组进行评价和补充,教师进行总结和点评,强调解题的关键步骤和注意事项。
(四)课堂练习(10分钟)
1.教材课后练习题(1)、(2)、(3)题。
2.补充练习题:
一个两位数,个位数字比十位数字大(3),且这个两位数等于个位数字与十位数字的乘积的(2)倍,求这个两位数。
用一块长(80cm),宽(60cm)的薄钢片,在四个角上截去四个相同的边长为(xcm)的小正方形,然后做成底面积为(1500cm^{2})的没有盖的长方体盒子,求(x)的值。
(五)课堂小结(5分钟)
1.与学生一起回顾本节课所学的主要内容,包括传播问题、增长率问题、面积问题的解题方法和步骤。
2.强调在解决实际问题时,要认真分析题意,找出等量关系,正确列出方程,并注意对解出的方程根进行合理性检验。
3.鼓励学生在日常生活中多观察、多思考,运用所学的数学知识解决实际问题。
(六)布置作业(5分钟)
1.基础作业:完成教材课后剩余练习题。
2.拓展作业:
参加一次聚会的每两人都握了一次手,所有人共握手(10)次,有多少人参加聚会?
某商场销售一批名牌衬衫,平均每天可售出(20)件,每件盈利(40)元。为了扩大销售,增加盈利,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价(1)元,商场平均每天可多售出(2)件。若商场平均每天要盈利(1200)元,每件衬衫应降价多少元?
五、教学反思
在本节课的教学中,通过实际问题的引入,激发了学生的学习兴趣和积极性。在知识讲解过程中,注重引导学生分析问题中的数量关系,建立数学模型,使学生较好地掌握了用一元二次方程解决实际问题的方法。小组合作探究和课堂练习环节,让学生在实践中巩固了所学知识,提高了学生的解题能力和团队合作精神。但在教学过程中,也发现部分学生在理解和应用增长率问题的公式时存在一定困难,需要在今后的教学中加强针对性的辅导。同时,在课堂时间的把控上还需要进一步优化,确保每个教学环节都能更加紧凑和高效。