相关栏目

展开全部

收起全部

初中数学学习资料

学习资料 时间:2024-05-04 03:06:46 WORD下载 PDF下载 投诉 投稿

初中数学学习资料

  在我们平凡的日常里,大家都经常接触学习资料吧?学习资料可以帮助大家预习、复习。哪些学习资料能够真正帮助到我们呢?以下是小编整理的初中数学学习资料,仅供参考,大家一起来看看吧。

初中数学学习资料1

  一、圆及圆的相关量的定义

  1、平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。

  2、圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。

  3、顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

  4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

  5、直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

  6、两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

  7、在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。

  二、有关圆的基本性质与定理

  1、点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO

  2、圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

  3、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

  4、在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

  5、一条弧所对的圆周角等于它所对的圆心角的一半。

  6、直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  7、不在同一直线上的3个点确定一个圆。

  8、一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

  9、直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO。

  10、圆的切线垂直于过切点的.直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

  11、圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):外离P>R+r;外切P=R+r;相交R—r。

  三、圆的方程

  1、圆的标准方程

  在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是:(x—a)^2+(y—b)^2=r^2

  2、圆的一般方程

  把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是:x^2+y^2+Dx+Ey+F=0

  和标准方程对比,其实D=—2a,E=—2b,F=a^2+b^2。

  相关知识:圆的离心率e=0、在圆上任意一点的曲率半径都是r。

  四、圆的定理

  1、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧。

  推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。

  推论2:圆的两条平行弦所夹的弧相等。

  2、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

  3、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

  4、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

  5、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。

初中数学学习资料2

  不等式的判定知识点

  1.常见的不等号有“>”“<”“≤”“≥”及“≠”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“≤”又叫作不大于,“≥”叫作不小于;

  2.在不等式“a>b”或“a

  3.不等号的开口所对的数较大,不等号的尖头所对的数较小;

  4.在列不等式时,一定要注意不等式关系的关键字,如:正数、非负数、不大于、小于等。

  初中数学不等式的性质知识点

  不等式的性质

  ①如果x>y,那么yy;(对称性)

  ②如果x>y,y>z;那么x>z;(传递性)

  ③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法原则)

  ④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

  ⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

  ⑥如果x>y,m>n,那么x+m>y+n;(充分不必要条件)

  ⑦如果x>y>0,m>n>0,那么xm>yn;

  ⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)[1]

  初中数学不等式知识点归纳

  1、概念:

  在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式、例如2x+2y≥2xy,sinx≤1,ex>0,2x<3,5x≠5等>x是超越不等式。

  2、分类:

  不等式分为严格不等式与非严格不等式。

  一般地,用纯粹的`'大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)

  “≥”(大于等于符号)“≤”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。

  通常不等式中的数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。

  我们大家在判定不等式时要记得,在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式。

  初三数学不等式证明知识点总结

  1、比较法:包括比差和比商两种方法。

  2、综合法

  证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,它是由因导果的方法。

  3、分析法

  证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。

  4、放缩法

  证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。

  5、数学归纳法

  用数学归纳法证明不等式,要注意两步一结论。

  在证明第二步时,一般多用到比较法、放缩法和分析法。

  6、反证法

  证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的'条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

初中数学学习资料3

  1、必然事件、不可能事件、随机事件的区别

  2、概率

  一般地,在大量重复试验中,如果事件A发生的频率

  会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记作P(A)=p.

  注意:(1)概率是随机事件发生的可能性的大小的数量反映。

  (2)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的`概率,但二者不能简单地等同。

  3、求概率的方法

  (1)用列举法求概率(列表法、画树形图法)

  (2)用频率估计概率:一大面,可用大量重复试验中事件发生频率来估计事件发生的概率。另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.

初中数学学习资料4

  不等式的概念

  1、不等式:用不等号表示不等关系的式子,叫做不等式。

  2、不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

  3、对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集。

  4、求不等式的解集的过程,叫做解不等式。

  5、用数轴表示不等式的方法。

  不等式基本性质

  1、不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变。

  2、不等式两边都乘以或除以同一个正数,不等号的方向不变。

  3、不等式两边都乘以或除以同一个负数,不等号的方向改变。

  4、说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

  一元一次不等式

  1、一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式。

  2、解一元一次不等式的一般步骤:1去分母2去括号3移项4合并同类项5将x项的系数化为1。

  一元一次不等式组

  1、一元一次不等式组的概念:几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

  2、几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。

  3、求不等式组的解集的过程,叫做解不等式组。

  4、当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。

  5、一元一次不等式组的解法

  1分别求出不等式组中各个不等式的解集。

  2利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集。

  6、不等式与不等式组

  不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  7、不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的`解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  初三数学上册的知识点总结

  直角三角形的判定方法:

  判定1:定义,有一个角为90°的三角形是直角三角形。

  判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。

  判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。

  判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。

  判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么

  判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。

  判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

初中数学学习资料5

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  a,b,c为常数,a≠0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大,则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的'互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax,x=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

初中数学学习资料6

  一、重要概念

  1.数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏)2)有标准

  2.非负数:正实数与零的统称。(表为:x0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aa1时,1/aD.积为1。

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

  5.数轴:

  ①定义(三要素)

  ②作用:A.直观地比较实数的`大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

  6.奇数、偶数、质数、合数(正整数-自然数)

  定义及表示:

  奇数:2n-1

  偶数:2n(n为自然数)

  7.绝对值:

  ①定义(两种):

  代数定义:

  几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。

  ②│a│0,符号││是非负数的标志;

  ③数a的绝对值只有一个;

  ④处理任何类型的题目,只要其中有││出现,其关键一步是去掉││符号。

  二、实数的运算

  1.运算法则(加、减、乘、除、乘方、开方)

  2.运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]

  分配律)

  3.运算顺序:A.高级运算到低级运算;B.(同级运算)从左

  到右(如5C.(有括号时)由小到中到大。

  三、应用举例(略)

  附:典型例题

  1.已知:a、b、x在数轴上的位置如下图,求证:│x-a│+│x-b│=b-a.

  2.已知:a-b=-2且ab0,(a0,b0),判断a、b的符号。

版权声明:此文自动收集于网络,若有来源错误或者侵犯您的合法权益,您可通过邮箱与我们取得联系,我们将及时进行处理。

本文地址:http://www.ikzyw.cn/zhuanti/xuexi/5794.html 转载时请以链接形式注明文章出处!

初中数学学习资料

手机扫码分享

Top